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PORE GROWTH IN SLIP BANDS IN LOCALIZED PLASTIC STRAIN 

V. M. Segal UDC 539.375.5 

Pore behavior in a plastically deformed material is of considerable interest in relation 
to viscous failure [I]. Solutions have been obtained [2, 3] for isolated pores acted on by 
homogeneous stress and velocity fields applied at infinity; a continuum description has also 
been given [4, 5] of a plastically dilating material containing a pore ensemble. In all cases 
it is assumed that the flow in the region of the pores is stable, while the initial spherical 
or cylindrical shape remains close to equilibrium. 

On the other hand, a feature common to all plastic bodies is that the flow is unstable 
which leads to regions of highly localized strain [6]. Such regions are observed at the 
microscopic and macroscopic levels as thin shear bands, within which the strain intensity 
is higher than that in parts outside by several orders of magnitude. The geometrical or 
material instability [6] determines whether the shear bands occupy fixed positions within the 
flow regions (lines of velocity discontinuity for the rigid-plastic body) or certain volumes 
in the deformed material (grain boundaries and other structural imperfections). Also, they 
can be observed not only directly after the start of plastic flow but also in the final stages 
preceding failure. 

Flow localization and the subsequent strain in slip bands are closely related to pore 
nucleation and growth. It has been suggested [7] that the localization is due to softening 
arising from the increase in porosity. An alternative view [6] relates the localization to 
detailed features of the constructive equations. However, no matter what the reasons, local- 
ization produces a considerable reduction in the plasticity because the strain is concen- 
trated in small volumes and a specific mechanism occurs for pore growth in the shear bands. 
The latter is accompanied by the formation of pore layers, in which viscous cracks grow and 
the material fails. As the thicknesses of the shear bands hardly alter during this process, 
it is clear that the pore shape becomes nonequilibrium at the localization stage, while the 
change in pore size occurs mainly in the shear planes. This conclusion is confirmed by 
analogous stability-loss phenomena for pores in pure shear in elastic and viscous materials 
[8]. Neglect of this feature should result in one substantially overestimating the plastic- 
ity parameters, as is observed in the analysis of viscous failure in shear bands [9, 10] 
based on an is, tropic pore growth mechanism [5]. 

Here we present a simple model for pore behavior during plastic-strain localization, 
which involves pronounced anisotropy in the growth rates in the shear plane and in the nor- 
mal direction. The results are applied in examining the formation of viscous cracks along 
velocity-discontinuity lines for a rigid-plastic material in pressure-working of metals. 
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1. Consider a material containing a rigid-plastic matrix with uniformly distributed 
pores. The material in the initial state is assumed to be macroscopically homogeneous and 
isotropic; the structural parameters are determined by the average pore dimensions 2a and 
the distances between them 2A. The porosity 

0 = ( a / A ) 3 < < t  (1.1) 

i s  a s s u m e d  s m a l l .  

Let strain localization set in at time t in a thin layer E containing a certain number 
of pores, which is oriented in a certain fashion with respect to the principal directions 
X i (Fig. I). The velocity field within the layer is 

ui = g i (X, )  (i = 5, 2, 3)i ( 1 . 2 )  

The f u n c t i o n s  g i  s h o u l d  s a t i s f y  t h e  c o n d i t i o n s  f o r  v e l o c i t y  c o n t i n u i t y  a t  t h e  b o u n d a r i e s  o f  
the layer: 

g~(x0 l  + = u$l +, g ~ ( X 0 l - = u ~ [ - ,  ( 1 . 3 )  

where the superscripts plus and minus relate to the internal and external boundaries, while 
the superscript s relates to the speed of the material outside the localization region. 
Superimposed rigid motion has no effect on the state of strain, so one can meet the symmetry 
condition at any point in the layer by choosing the transport velocity: 

gi(Xi)  l + = - -g i (X i )  l-" ( 1 . 4 )  

We u s e  ( 1 . 3 )  and  ( 1 . 4 )  t o  w r i t e  t h e  b o u n d a r y  c o n d i t i o n s  f o r  t h e  g i  i n  a s m a l l  r e g i o n  a r o u n d  
this point as 

g (x01 + = -  = [ud.  ( 1 . 5 )  

I t  f o l l o w s  f r o m  ( 1 . 2 )  and  ( 1 . 5 )  t h a t  t h e  s t a t e  o f  s t r a i n  w i t h i n  t h e  l o c a l i z a t i o n  r e g i o n  i s  
d e t e r m i n e d  b y  t h e  i n c r e m e n t  i n  t h e  v e l o c i t y  v e c t o r  [u~]  a t  t h e  b o u n d a r i e s .  

We r e s o l v e  t h e  v e c t o r  [uS]  i n t o  t h e  n o r m a l  c o m p o n e n t  [w] a n d  t h e  t a n g e n t i a l  one  [ v ] ,  
b o t h  i n  r e l a t i o n  t o  l a y e r  Z, a n d  i n t r o d u c e  a l o c a l  C a r t e s i a n  c o o r d i n a t e  s y s t e m  x ,  y ,  z ,  i n  
w h i c h  t h e  z a x i s  c o i n c i d e s  w i t h  t h e  n o r m a l  n t o  t h e  l a y e r  ~ and  t h e  y a x i s  c o i n c i d e s  w i t h  
t h e  d i r e c t i o n  o f  [ v ] ,  w h i l e  t h e  o r i g i n  c o i n c i d e s  w i t h  t h e  c e n t e r  o f  t h e  a r b i t r a r y  p o r e  0 
( F i g .  1 ) .  F o r  0 ~ 1 we c a n  n e g l e c t  t h e  i n t e r a c t i o n  b e t w e e n  p o r e s ,  w h i c h  e n a b l e s  u s  t o  r e -  
s t r i c t  c o n s i d e r a t i o n  t o  a n  e l e m e n t  o f  t h e  l a y e r  w i t h  mean  d i m e n s i o n s  2A a l o n g  t h e  x a n d  y 
a x e s  i n  t h e  l o c a l  s y s t e m  ( h a t c h e d  i n  F i g .  1 ) .  A c c o r d i n g  t o  ( 1 . 5 ) ,  t h e  s t a t e  w i t h i n  t h i s  
e l e m e n t  i s  d e t e r m i n e d  b y  t h e  s o l u t i o n  f o r  t h e  s t r e t c h i n g  ( c o m p r e s s i o n )  w i t h  s h e a r  o f  a t h i n  
l a y e r  w i t h  r a t e s  •  i [ v ] / 2  c o r r e s p o n d i n g l y .  As t h i s  s h e a r  s h o u l d  o c c u r  on t h e  w e a k e s t  
s e c t i o n ,  t h e  l a y e r  t h i c k n e s s  s h o u l d  be c o m p a r a b l e  w i t h  t h e  p o r e  h e i g h t  2h .  A l s o ,  t h e  i n -  
c o m p r e s s i b i l i t y  c o n d i t i o n  a n d  s y m m e t r y  c o n s i d e r a t i o n s  i m p l y  t h a t  t h e  f l o w  o f  m a t e r i a l  t h r o u g h  
t h e  b o u n d a r i e s  o f  t h e  e l e m e n t  x = • y = • i s  z e r o ,  w h i l e  t h a t  t h r o u g h  t h e  b o u n d a r i e s  z = 
•  i s  r e l a t e d  t o  c h a n g e  i n  p o r e  v o l u m e .  To s i m p l i f y  t h e  a n a l y s i s ,  we r e p l a c e  t h e  a c t u a l  p o r e  
s h a p e  by  a n  e q u i l a t e r a l  p a r a l l e l e p i p e d  i n  s u c h  a way  a s  t o  r e t a i n  t h e  mean p o r o s i t y  o f  ( 1 . 1 )  
a n d  t h e  r a t i o  o f  t h e  d i m e n s i o n s  a l o n g  t h e  a x e s  o f  t h e  l o c a l  c o o r d i n a t e  s y s t e m .  F i g u r e  2a 
shows the final geometry of this element. 

To construct the solution, we first consider stretching (compression) with shear for a 
thin rectangular band with stresses applied to the edges (Fig. 2b): 

fix = qx at x = ' + ' L ,  f f y = q ~  at Y = 4-B. ( 1 . 6 )  

The kinematic boundary conditions are defined by 

m = [ w ] / D ] .  (1.7) 

We assume that m ~ I, i.e., the state in the layer approximates to simple shear, for which 
m = 0. For m = 0, there are maximal tangential stresses Tzy = k at the constant surfaces 
z • where k is the yield point of the matrix material in shear. If m a 0, the inherent 
strain in the band changes the velocities of the flow relative to external volumes of the 
material, which is accompanied by redistribution of the frictional forces at the boundaries 
z = • As m is small, we replace the actual tangential-stress distribution at the bound- 
aries by the mean values: 
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y (18) 
�9 zx "" O, =z~ ~ 4--L-ff "vzvdxdg = �9 (m)  at z = -4- h ,  * 

Here  T(m) i s  t h e  d e s i r e d  f u n c t i o n  of  m. E q u a t i o n s  ( 1 . 6 ) - ( 1 . 8 )  d e f i n e  t h e  b o u n d a r y  c o n d i t i o n s .  

For a sufficiently thin band h <<L, h << B and a smallm, wecanneglect the changes in the 
stress components over the thickness of the layer: 

O o i / O z  " :  O. ( 1 . 9 )  

We s u b s t i t u t e  ( 1 . 9 )  i n t o  t h e  e q u i l i b r i u m  e q u a t i o n s  

Oou/Ox i = O (i = l ,  2,  3, x~ = x ,  x~ = g, xs = z) 

and integrate them together with (I .6) and (I .8) to get that the state of strain in the band 
corresponds to the homogeneous solution 

" ~  = T~u = O, " ~  = "r(m), o=  = q=,  o 9 = qu, ~ = P ,  (1. lO) 

where p is the normal pressure at the boundaries z = +h. The components of (I. 10) should 
satisfy the Mises plasticity condition: 

!----  (qx - -  qv)3 + (qu - -  P P  + (P - -  q x)~ + 6 ~ ( m ) - -  6k~ = O. ( 1 . 1 1 )  

We now determine the state of strain in the band. According to the associated plastic- 
flow law, the components of the strain-rate tensor will be 

~ = -~- = -~- ( 2 %  - -  qx - -  P) ,  
(1.12) 

~z = -~- (2p - -  qx  - -  qu), ~zu = 2 k T  ( re ) ,  ~lxu = ~lzx = 0 (~ > 0 ) .  

In the same way as (1.10), the solution to (1.12) corresponds to a homogeneous state of strain 
throughout the band. This enables us to express (I .12) in terms of the velocities at the 
edges: 

~= = u J L ,  ~ u ' =  v l / B ,  ~ = [w] /2h ,  ~l~y = [v l /2h ,  ( 1 . 1 3 )  

where  t h e  q u a n t i t i e s  u l  and vz r e l a t e  to  p o i n t s  i n  t h e  m i d d l e  s e c t i o n  z = 0 ( F i g .  2 b ) .  Sub-  
s t i t u t i o n  of (1.12) and (1.13) into (1.7) gives 

m = ~t~lzu = (2p - -  q x -  qu)16~(m), ,  ( 1 . 1 4 )  

o r  

�9 (m) = (2p - -  q ~ -  q'u)/6ra. ( 1 . 1 5 )  

I f  m i s  g i v e n ,  t h e n  ( 1 . 1 1 )  and ( 1 . 1 5 )  can be s o l v e d  f o r  t h e  unknown q u a n t i t i e s  p and T(m).  
On the other hand, if the normal pressure p at the contact is given, then m and z(m) can be 
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found from (1.11) and (1.14). Then all the state parameters can be determined. 

In this case m ~ I, the solution to (1.11) and (1.14) up to quantities of the second 

order of smallness takes the form 

p ~ _  (q~ q-  q~)/2 -~- 3 ink ,  m ~ ( 2 p - - q ~ - -  qy) /6k ,  ~(m)_~ k. 1 . 1 6 )  

The p a r a m e t e r s  o f  t h e  s t a t e  o f  s t r a i n  a r e  

~ = ( [ v ] / 8 k h ) ~ -  q~ - -  2 m k ) ,  ~y = ( [ v ] /8kh ) (qy  - -  q~ - -  2 ink) ,  1 . 1 7 )  

~ = [ v ] m / 2 h ,  ~z~ = [v] /2h ,  

and  t h e  s p e e d s  a t  t h e  e d g e s  o f  t h e  b a n d  a r e  

u~ = ( [ v ] L / 8 k h ) ( q x -  qy - -  2 ink ) ,  v~ = ( [ v ] B / 8 k h ) ( q y  - -  q x -  2 ink) .  I. 18) 

2. We use this solution to examine the state in a layer element containing a pore (Fig. 

2a). Because of the symmetry, we restrict consideration to a quarter of the element, which 
we divide up into three homogeneously deformed parts I, II, and III. The kinematic param- 

eter of (1.7) remains constant for all these, while condition (I.1) implies that m ~ ] 
(clearly, m + 0 for e * 0). At the boundaries z = • (1.8) is obeyed, while at the bound- 

aries x = a and y = a the normal velocities and stresses are continuous (Fig. 2a shows the 

quantities relating to regions II and III), while at the boundaries x = A, y = A, x = 0, and 
y = 0 the normal velocities in the median section are zero. This means that the solution 

to (1.16)-(1.18) with the corresponding parameter choice applies for each of the regions. 

From (1.18) we write the velocities at the boundaries: 

Ul = [ v ] ( A - - a )  
- -  8kh (q~ - -  qy - -  2ink)  at x = a, 

( 2 . 1 )  
vl iv] ( A -  a) 

= - -  8k]~ (q~ - -  q~ - -  2 ink )  at y ~ a 

for region I; 

[z,l (A -- a) 2ink) ul = Sk;~ (qY + 

[,1 a vl ~fl~ (qY - -  2 m k )  at 

at X = a,  

y ~ a  

(2.2) 

for region II; and 

[ v ] a  [v] ( A - -  a) 
u 1 = ~ (q~ - -  2 ink)  at x = a, vl  = 8kh (q~ + 2 ink )  

at y ~ a 

for region III. We equate the corresponding equations (2.1)-(2.3) to find the unknown 

stresses at the boundaries between the regions; 

q ~ = q u  = q = 2 m k A / a .  

The normal pressure for each of the regions is 

P1 = ink(3  ~- 2 A / a ) ,  PII  = P u I  = ink (3  ~- A / a ) .  

Then the mean pressure on the shear area of the layer element is 

(2.3) 

(2.4) 

[ A - -  a \2 (A - -  a) a ~ ,  m k ( t  + 2 A / a ) .  ( 2 . 5 )  p = + 2p i 

The quantity of (2.5) corresponds to the macroscopic value of the hydrostatic component of 
the stress tensor ~ in the shear plane and is usually given. Then from (2.5) we have 

rn = o a / [ k ( 2 A  ~- a)] .  ( 2 . 6 )  

As regards the other equations in (2.2) and (2.3), we see that the speeds at the sur- 
faces of the pores in the directions of the x and y axes are equal, while the pore grows or 

condenses isotropically in the shear plane. From (2.4) and (2.6) we have the corresponding 

growth rates: 
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u = v = [v]o(A z - -  a2)/[4kh(2A + a)]. ( 2 .7 )  

We now d e t e r m i n e  the  po re  s i z e  change d u r i n g  f i n i t e  s t r a i n .  From (2 .7 )  we have the  p o r e - s i z e  
increments as 

dh = [v]oadt/[4k(2A + a)], da = [u]o(A 2 - -  a~)dt/[4kh(2A + a)], ( 2 .8 )  

whence 

dh/da = 2ah/(A ~ - -  ~ ) .  

We integrate this equation with the initial condition a0 = h0, which is a consequence of the 
property isotropy of the material in the initial state, to get 

h = a o ( A  2 - -  a~) / (  A~ - -  ~ ) -  ( 2 . 9 )  

E q u a t i o n s  (2 .8 )  and (2 .9 )  can be s o l v e d  e x p l i c i t l y  f o r  a and h.  I n  a c c o r d a n c e  w i t h  ( 1 . 1 ) ,  
we r e s t r i c t  o u r s e l v e s  to  t he  s t a g e  of  p o r e  growth  where a /A i s  f a i r l y  s m a l l .  Then (2 .9 )  im- 
p l i e s  h ~ a0 ,  w h i l e  the  second e q u a t i o n  in  (2 .8 )  g i v e s  

a = a o - { - o A F / 4 k ,  (2 .10 )  

where F = [v]t/2a0 is the relative shear in the localization layer over time t. Therefore, 
the pores evolve isotropically in the localization region only in the shear plane, while the 
pore height remains close to the initial value. For ~ > 0 the pores grow in the same way as 
viscous cracks, and their transverse dimensions change in proportion to the product of the 
shear F and the relative hydrostatic pressure o/k; for o < 0 there is the analogous pore 
closure process. In both cases, the pore shape becomes substantially nonequilibrium, which 
means that the mean-porosity parameter of (1.1) cannot be used as a characteristic during 
the localization stage. The corresponding quantity must be referred to the localization 
volume. From (2.10) we have for the porosity in a shear band 

0 = +  r/4k) ( 2 . 1 1 )  

where e0 i s  t he  i n i t i a l  p o r o s i t y  ( a t  t = 0 ) .  This  p r o c e s s  shou ld  be accompanied  by a c e r t a i n  
m o d i f i c a t i o n  i n  the  c o n s t i t u e n t  e q u a t i o n s  d e s c r i b i n g  the  p l a s t i c  b e h a v i o r  in  the  l o c a l i z a t i o n  
r e g i o n .  A l though  t h i s  m i c r o m e c h a n i c a l  model i s  too  c rude  to  r e v e a l  some d e t a i l e d  f e a t u r e s  of  
t h e s e  e q u a t i o n s  such as noda l  p o i n t s  a t  t he  l o a d i n g  s u r f a c e ,  n e v e r t h e l e s s  (1 .17 )  and (2 .6 )  
i n d i c a t e  an e x p l i c i t  dependence  on the  h y d r o s t a t i c  p r e s s u r e  [ 6 ] .  

3. An example of  a s t a t i o n a r y  l o c a l i z a t i o n  r e g i o n  i s  p r o v i d e d  by the  v e l o c i t y - d i s c o n -  
t i n u i t y  l i n e s  in  an i n c o m p r e s s i b l e  r i g i d - p l a s t i c  m a t e r i a l .  There  i s  a lways  some s l i g h t  p o -  
r o s i t y  in  a r e a l  m e t a l ,  bu t  when t h e r e  i s  e x t e n s i v e  p l a s t i c  s t r a i n  one o b s e r v e s  na r row  s h e a r  
bands w i t h  h i g h  v e l o c i t y  g r a d i e n t s  a t  the  b o u n d a r i e s  of  the  c o r r e s p o n d i n g  r e g i o n s ,  which  a r e  
c l o s e  to  d i s c o n t i n u i t i e s .  I n  many i n s t a n c e s  o f  f o r g i n g ,  r o l l i n g ,  and w i r e  d r awing ,  the  ma- 
t e r i a l  s e p a r a t e s  a l o n g  t h e s e  b o u n d a r i e s  and v i s c o u s  c r a c k s  a r e  fo rmed .  The l i n e a r i z e d  s o l u -  
t i o n  i n  t e rms  of  the  p a r a m e t e r  of  ( 1 . 1 )  can be used  f o r  the  l o c a l i z a t i o n  l a y e r  i f  t he  p o -  
r o s i t y  is small: 

o ' ~9. ' 

where the  q u a n t i t i e s  w i t h  z e r o  s u p e r s c r i p t s  c o r r e s p o n d  to  a r i g i d - p l a s t i c  body and the  pr imed 
q u a n t i t i e s  r ema in  t o  be d e t e r m i n e d .  From ( 1 . 7 ) ,  ( 2 . 4 ) ,  and (2 .5 )  we have as f o l l o w s  f o r  the  
m a c r o s c o p i c  s t r a i n  r a t e s  in  the  l a y e r :  

~ ~." ~y ~-- ~ ~ ~ ~ O, ~ = oa[v]/[2kh(2A + a)], ~ y  = [t'l/2h, 

so the rate of change of volume is 

~ ~a[vl/[2kh(2A + a)]. ( 3 . 2 )  

We substitute (3.1) into (3.2) and neglect quantities of the second order of smallness to get 

~__ a~ ~ + a), 

Then up to terms of order 0 2 , the porosity change in a shear band can be determined from the 
corresponding solution on a velocity-discontinuity line for an incompressible rigid-plastic 
material. The approach is of value in that one can use well-developed techniques in the 
theory of plasticity [11] in examining viscous failure in the localization region. For sim- 
plicity we restrict ourselves to the case of a planar strain state. Let E be a line of 
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velocity discontinuity in a rigid-plastic material, along which the following kinematic rela- 
tions [11] apply: 

w o = wOl § = w o i - ,  b ~ = IvOl § - vOl-I ,  

T h e r e  i s  a f i n i t e  s h e a r  on p a s s a g e  t h r o u g h  t h i s  l i n e :  

Fo = [vOl/w ~ ( 3 . 3 )  

We substitute (3.3) into (2.11) in accordance with the above to get the porosity 8 after 
intersecting the lines 

, oo [voj ~ 
O= O~ '3+~7 �9 (3.4) 

On current concepts [I, 2], the viscous-failure mechanism in a plastic metal is deter- 
mined by the @equentially occurring processes of pore nucleation, growth, and coalescence at 
different levels. The contributions from the nucleation and coalescence stages to the over- 
all strain history are unimportant, and they can be neglected, and the viscous-failure cri- 
terion can be formulated from the condition for the attainment of a critical porosity 8* [12]. 
In macroscopic failure, this state must extend to some minimal representative volume AV con- 
taining a sufficiently large number N of pores and microstructure elements. As there are 
different pore-nucleation probabilities and growth conditions at the microstructure elements, 
(3.4) must be averaged over the ensemble of realizations N within the volume AV with allow- 
ance for the nonuniformity in the distributions of the microstresses and microstrains. If we 
introduce the structure parameters <o'> and ~ [12] and neglect the nonuniformity of the 
macroscopic state within AV, then averaging of (3.4) at the instant when the critical po- 
rosity is attained gives the condition for macroscopic failure within the localization re- 
gion: 

F* = [4~(<0"> 1/2 . <Oo>'/s)]/[n(o~ <o '>)] . :  ( 3 . 5 )  

Here <o'> is the average value of the spherical component in the microstress tensor near 
the pores, n is the corresponding parameter characterizing the microstrain inhomogeneity, 
F* is the limiting shear-strain intensity in the localization region at failure, and the 
quantities in angu]arbrackets relate to the mean values. One sees that the solution to (3.5) 
exists only for ~0 + <o'> > 0, when pore growth occurs; for ~0 + <o'> < 0, strain in the 
shear bands is accompanied by pore closure. 

In order to use (3.5), one has to know the quantities <o'>, ~, <o*> as characteristics 
of the material in the relevant state. These quantities have to be determined by experiment 
for macroscopic description, and also because of the complexity in deriving theoretical 
estimates. As they are assumed to be independent of the scheme for the state of strain, like 
the other mechanical constants, one can use plasticity diagrams obtained in simple loading 
to derive them [13]. Figure 3 gives results from corresponding calculations from (3.5) simi- 
lar to those considered in [12] for steel 45 (curve I) and aluminum alloy AMg2 (curve 2). 
Here we have assumed 8o = 0, 8* = 0.2. The dashed curves in Fig, 3 relate to experiments 
for the case [13] where a homogeneous state was provided in the working volumes and the pore 
growth approximated isotropic. The curves of Fig. 3 show that pronounced pore growth an- 
isotropyin the shear plane results in considerable reduction in the limiting plasticity in 
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the localization region. This difference demonstrates the effects of the various pore growth 
mechanisms in a homogeneously deformable region and in a shear band; in calculations for the 
average deformations referred to a finite volume for the latter case, the discrepancies be- 
tween the curves become even more important [10, 11]. 

These results enable one to estimate the failure probability in localization regions 
when the shape of a metal is changed plastically. As the shear-strain intensity P ~ on the 
velocity-discontinuity lines for a rigid-plastic material is usually of the orde~ of one [11], 
it follows from Fig. 3 that hydrostatic tensile stresses (or low compressive ones) produce 
the limiting states on the discontinuity lines before that at the other points in the defor- 
mation focus. The corresponding types of viscous failure are usually observed in the plastic 
working of metals in the form of forging press, axial cracks, and exfoliation along the 
boundaries of the plastic region and the extensive-shear lines. 
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